Cell-to-cell spread of the RNA interference response suppresses Semliki Forest virus (SFV) infection of mosquito cell cultures and cannot be antagonized by SFV.

نویسندگان

  • Ghassem Attarzadeh-Yazdi
  • Rennos Fragkoudis
  • Yi Chi
  • Ricky W C Siu
  • Liane Ulper
  • Gerald Barry
  • Julio Rodriguez-Andres
  • Anthony A Nash
  • Michèle Bouloy
  • Andres Merits
  • John K Fazakerley
  • Alain Kohl
چکیده

In their vertebrate hosts, arboviruses such as Semliki Forest virus (SFV) (Togaviridae) generally counteract innate defenses and trigger cell death. In contrast, in mosquito cells, following an early phase of efficient virus production, a persistent infection with low levels of virus production is established. Whether arboviruses counteract RNA interference (RNAi), which provides an important antiviral defense system in mosquitoes, is an important question. Here we show that in Aedes albopictus-derived mosquito cells, SFV cannot prevent the establishment of an antiviral RNAi response or prevent the spread of protective antiviral double-stranded RNA/small interfering RNA (siRNA) from cell to cell, which can inhibit the replication of incoming virus. The expression of tombusvirus siRNA-binding protein p19 by SFV strongly enhanced virus spread between cultured cells rather than virus replication in initially infected cells. Our results indicate that the spread of the RNAi signal contributes to limiting virus dissemination.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phenoloxidase Activity Acts as a Mosquito Innate Immune Response against Infection with Semliki Forest Virus

Several components of the mosquito immune system including the RNA interference (RNAi), JAK/STAT, Toll and IMD pathways have previously been implicated in controlling arbovirus infections. In contrast, the role of the phenoloxidase (PO) cascade in mosquito antiviral immunity is unknown. Here we show that conditioned medium from the Aedes albopictus-derived U4.4 cell line contains a functional P...

متن کامل

Antiviral RNA interference responses induced by Semliki Forest virus infection of mosquito cells: characterization, origin, and frequency-dependent functions of virus-derived small interfering RNAs.

RNA interference (RNAi) is an important mosquito defense mechanism against arbovirus infection. In this paper we study the processes underlying antiviral RNAi in Aedes albopictus-derived U4.4 mosquito cells infected with Semliki Forest virus (SFV) (Togaviridae; Alphavirus). The production of virus-derived small interfering RNAs (viRNAs) from viral double-stranded RNA (dsRNA) is a key event in t...

متن کامل

Semliki Forest virus strongly reduces mosquito host defence signaling

The Alphavirus genus within the Togaviridae family contains several important mosquito-borne arboviruses. Other than the antiviral activity of RNAi, relatively little is known about alphavirus interactions with insect cell defences. Here we show that Semliki Forest virus (SFV) infection of Aedes albopictus-derived U4.4 mosquito cells reduces cellular gene expression. Activation prior to SFV inf...

متن کامل

Generation and Functional In Vitro Analysis of Semliki Forest Virus Vectors Encoding TNF-α and IFN-γ

Cytokine gene delivery by viral vectors is a promising novel strategy for cancer immunotherapy. Semliki Forest virus (SFV) has many advantages as a delivery vector, including the ability to (i) induce p53-independent killing of tumor cells via apoptosis, (ii) elicit a type-I interferon (IFN) response, and (iii) express high levels of the transgene. SFV vectors encoding cytokines such as interle...

متن کامل

Properties of non-structural protein 1 of Semliki Forest virus and its interference with virus replication

Semliki Forest virus (SFV) non-structural protein 1 (nsP1) is a major component of the virus replicase complex. It has previously been studied in cells infected with virus or using transient or stable expression systems. To extend these studies, tetracycline-inducible stable cell lines expressing SFV nsP1 or its palmitoylation-negative mutant (nsP16D) were constructed. The levels of protein exp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of virology

دوره 83 11  شماره 

صفحات  -

تاریخ انتشار 2009